Logo 1 Logo 2

Repositioning Candidate Details

Candidate ID: R0370
Source ID: DB01264
Source Type: approved
Compound Type: small molecule
Compound Name: Darunavir
Synonyms:
Molecular Formula: C27H37N3O7S
SMILES: [H][C@@]12CCO[C@]1([H])OC[C@@H]2OC(=O)N[C@@H](CC1=CC=CC=C1)[C@H](O)CN(CC(C)C)S(=O)(=O)C1=CC=C(N)C=C1
Structure:
DrugBank Description: Darunavir is a protease inhibitor used to treat HIV. It acts on the HIV aspartyl protease which the virus needs to cleave the HIV polyprotein into its functional fragments.
CAS Number: 206361-99-1
Molecular Weight: 547.664
DrugBank Indication: Darunavir, co-administered with ritonavir, and with other antiretroviral agents, is indicated for the treatment of human immunodeficiency virus (HIV) infection in antiretroviral treatment-experienced adult patients, such as those with HIV-1 strains resistant to more than one protease inhibitor.
DrugBank Pharmacology: Darunavir is an inhibitor of the human immunodeficiency virus (HIV) protease. In studies, the drug, co-administered with ritonavir in combination therapy, significantly reduced viral load and increased CD4 cell counts in this treatment-experienced patient population (Tibotec, 2006, Product Monograph, Prezista 2006). Darunavir is used as an adjunct therapy with low dose ritonavir, which inhibits cytochrome P450 3A (CYP3A) which increases the bioavailability and half life of darunavir.
DrugBank MoA: Darunavir is a HIV protease inhibitor which prevents HIV replication by binding to the enzyme's active site, thereby preventing the dimerization and the catalytic activity of the HIV-1 protease. Darunavir selectively inhibits the cleavage of HIV encoded Gag-Pol polyproteins in virus-infected cells, which prevents the formation of mature infectious virus particles. Structual analyses suggests that the close contact that darunavir has with the main chains of the protease active site amino acids (Asp-29 and Asp-30) is an important contributing factor to its potency and wide spectrum of activity against multi-protease inhibitor resistant HIV-1 variants. Darunavir can also adapt to the changing shape of a protease enzyme because of its molecular flexibility. Darunavir is known to bind to two distinct sites on the enzyme: the active site cavity and the surface of one of the flexible flaps in the protease dimer.
Targets: Human immunodeficiency virus type 1 protease
Inclusion Criteria: