Repositioning Candidate Details
Candidate ID: | R0191 |
Source ID: | DB00672 |
Source Type: | approved; investigational |
Compound Type: | small molecule |
Compound Name: | Chlorpropamide |
Synonyms: | |
Molecular Formula: | C10H13ClN2O3S |
SMILES: | CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 |
Structure: |
|
DrugBank Description: | Chlorpropamide is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). It belongs to the sulfonylurea class of insulin secretagogues, which act by stimulating β cells of the pancreas to release insulin. Sulfonylureas increase both basal insulin secretion and meal-stimulated insulin release. Medications in this class differ in their dose, rate of absorption, duration of action, route of elimination and binding site on their target pancreatic β cell receptor. Sulfonylureas also increase peripheral glucose utilization, decrease hepatic gluconeogenesis and may increase the number and sensitivity of insulin receptors. Sulfonylureas are associated with weight gain, though less so than insulin. Due to their mechanism of action, sulfonylureas may cause hypoglycemia and require consistent food intake to decrease this risk. The risk of hypoglycemia is increased in elderly, debilitated and malnourished individuals. Chlorpropamide is not recommended for the treatment of NIDDM as it increases blood pressure and the risk of retinopathy (UKPDS-33). Up to 80% of the single oral dose of chlorpropramide is metabolized, likely in the liver; 80-90% of the dose is excreted in urine as unchanged drug and metabolites. Renal and hepatic dysfunction may increase the risk of hypoglycemia. |
CAS Number: | 94-20-2 |
Molecular Weight: | 276.74 |
DrugBank Indication: | For treatment of NIDDM in conjunction with diet and exercise. |
DrugBank Pharmacology: | Chlorpropamide, a second-generation sulfonylurea antidiabetic agent, is used with diet to lower blood glucose levels in patients with diabetes mellitus type II. Chlorpropamide is twice as potent as the related second-generation agent glipizide. |
DrugBank MoA: | Sulfonylureas such as chlorpropamide bind to ATP-sensitive potassium channels on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Depolarization stimulates calcium ion influx through voltage-sensitive calcium channels, raising intracellular concentrations of calcium ions, which induces the secretion, or exocytosis, of insulin. |
Targets: | ATP-binding cassette sub-family C member 8 |
Inclusion Criteria: |

Strategy ID | Strategy | Synonyms | Related Targets | Related Drugs |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I02 | 1184 | nephrotic syndrome | "A nephrosis characterized by marked increase in glomerular protein permeability resulting in marked elevation of urine protein levels, hypoalbuminemia, hyperlipidemia, and hypercoagulability." [url:https\://en.wikipedia.org/wiki/Nephrotic_syndrome, url:https\://www.niddk.nih.gov/health-information/kidney-disease/nephrotic-syndrome-adults] | Details |