Mechanism: | NA; NA; By illustrating vast genetic heterogeneity, this study demonstrates the value of genetic testing in a real-world PKD cohort by diagnostic verification, falsification, and disease prediction. In the era of specific treatment for fast progressive ADPKD, genetic confirmation should form the basis of personalized patient care.; NA; NA; NA; NA; NA; NA; The course of autosomal dominant polycystic kidney disease (ADPKD) varies among individuals, with some reaching ESRD before 40 years of age and others never requiring RRT. In this study, we developed a prognostic model to predict renal outcomes in patients with ADPKD on the basis of genetic and clinical data. We conducted a cross-sectional study of 1341 patients from the Genkyst cohort and evaluated the influence of clinical and genetic factors on renal survival. Multivariate survival analysis identified four variables that were significantly associated with age at ESRD onset, and a scoring system from 0 to 9 was developed as follows: being male: 1 point; hypertension before 35 years of age: 2 points; first urologic event before 35 years of age: 2 points; PKD2 mutation: 0 points; nontruncating PKD1 mutation: 2 points; and truncating PKD1 mutation: 4 points. Three risk categories were subsequently defined as low risk (0-3 points), intermediate risk (4-6 points), and high risk (7-9 points) of progression to ESRD, with corresponding median ages for ESRD onset of 70.6, 56.9, and 49 years, respectively. Whereas a score ≤3 eliminates evolution to ESRD before 60 years of age with a negative predictive value of 81.4%, a score >6 forecasts ESRD onset before 60 years of age with a positive predictive value of 90.9%. This new prognostic score accurately predicts renal outcomes in patients with ADPKD and may enable the personalization of therapeutic management of ADPKD.; NA; NA; Renal cysts are clinically and genetically heterogeneous conditions. Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent life-threatening genetic disease and mainly caused by mutations in PKD1. The presence of six PKD1 pseudogenes and tremendous allelic heterogeneity make molecular genetic testing challenging requiring laborious locus-specific amplification. Increasing evidence suggests a major role for PKD1 in early and severe cases of ADPKD and some patients with a recessive form. Furthermore it is becoming obvious that clinical manifestations can be mimicked by mutations in a number of other genes with the necessity for broader genetic testing. We established and validated a sequence capture based NGS testing approach for all genes known for cystic and polycystic kidney disease including PKD1. Thereby, we demonstrate that the applied standard mapping algorithm specifically aligns reads to the PKD1 locus and overcomes the complication of unspecific capture of pseudogenes. Employing careful and experienced assessment of NGS data, the method is shown to be very specific and equally sensitive as established methods. An additional advantage over conventional Sanger sequencing is the detection of copy number variations (CNVs). Sophisticated bioinformatic read simulation increased the high analytical depth of the validation study and further demonstrated the strength of the approach. We further raise some awareness of limitations and pitfalls of common NGS workflows when applied in complex regions like PKD1 demonstrating that quality of NGS needs more than high coverage of the target region. By this, we propose a time- and cost-efficient diagnostic strategy for comprehensive molecular genetic testing of polycystic kidney disease which is highly automatable and will be of particular value when therapeutic options for PKD emerge and genetic testing is needed for larger numbers of patients.; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; SCD and ADPKD differ in pathophysiological mechanisms and treatment regimens. As such, it will be paramount for this teenager to be closely monitored for signs of diminished kidney function and to be co-managed as he transitions to adult care to ensure proper treatment and management. Early identification of individuals with both SCD and a co-occurring condition is crucial to ensuring proper clinical management. Furthermore, identifying and reporting additional patients with SCD and ADPKD dual diagnoses will help us to understand the co-occurring disease course and optimal treatments.; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; A year treatment with tolvaptan significantly improved %TKV in patients with ADPKD, regardless of the gene mutation type.; NA; NA; NA; NA; NA; NA; NA; Autosomal dominant polycystic kidney disease (ADPKD) is one of the main causes of end-stage renal disease (ESRD). Genetic information is of the utmost importance in understanding pathogenesis of ADPKD. Therefore, this study aimed to demonstrate the genetic characteristics of ADPKD and their effects on renal function in 749 Korean ADPKD subjects from 524 unrelated families. Genetic studies of PKD1/2 were performed using targeted exome sequencing combined with Sanger sequencing in exon 1 of the PKD1 gene and a multiple ligation probe assay. The mutation detection rate was 80.7% (423/524 families, 331 mutations) and 70.7% was novel. PKD1 protein-truncating (PKD1-PT) genotype was associated with younger age at diagnosis, larger kidney volume, lower renal function compared to PKD1 non-truncating and PKD2 genotypes. The PKD1 genotype showed earlier onset of ESRD compared to PKD2 genotype (64.9 vs. 72.9 years old, P < 0.001). In frailty model controlled for age, gender, and familial clustering effect, PKD2 genotype had 0.2 times lower risk for reaching ESRD than PKD1-PT genotype (p = 0.037). In conclusion, our results suggest that genotyping can contribute to selecting rapid progressors for new emerging therapeutic interventions among Koreans.; NA; NA; NA; NA; NA; NA; NA; Not applicable.; NA; NA; NA; NA; NA; NA; Cases and families were concentrated in certain geographical areas and a significant number of individuals were undiagnosed prior to cardiovascular death or diagnosed late after reproduction. Given that there is currently no curative treatment, the primary prevention strategy of preimplantation genetic diagnosis should play a leading role.; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss-of-function mutations in either PKD1 or PKD2 genes, which encode polycystin-1 (TRPP1) and polycystin-2 (TRPP2), respectively. Increased activity of the mammalian target of rapamycin (mTOR) pathway has been shown in PKD1 mutants but is less documented for PKD2 mutants. Clinical trials using mTOR inhibitors were disappointing, while the AMP-activated kinase (AMPK) activator, metformin is not yet tested in patients. Here, we studied the mTOR activity and its upstream pathways in several human and mouse renal cell models with either siRNA or stable knockdown and with overexpression of TRPP2. Our data reveal for the first time differences between TRPP1 and TRPP2 deficiency. In contrast to TRPP1 deficiency, TRPP2-deficient cells did neither display excessive activation of the mTOR-kinase complex nor inhibition of AMPK activity, while ERK1/2 and Akt activity were similarly affected among TRPP1- and TRPP2-deficient cells. Furthermore, cell proliferation was more pronounced in TRPP1 than in TRPP2-deficient cells. Interestingly, combining low concentrations of rapamycin and metformin was more effective for inhibiting mTOR complex 1 activity in TRPP1-deficient cells than either drug alone. Our results demonstrate a synergistic effect of a combination of low concentrations of drugs suppressing the increased mTOR activity in TRPP1-deficient cells. This novel insight can be exploited in future clinical trials to optimize the efficiency and avoiding side effects of drugs in the treatment of ADPKD patients with PKD1 mutations. Furthermore, as TRPP2 deficiency by itself did not affect mTOR signaling, this may underlie the differences in phenotype, and genetic testing has to be considered for selecting patients for the ongoing trials.; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; In this pragmatic pediatric and adult cohort with suspected monogenic kidney disease, ES had high diagnostic and clinical utility. Our findings, including predictors of positive diagnosis, can be used to guide clinical practice and health service design.; NA; NA; NA; NA; On the surface of most animal and other eukaryotic cells are small rod-like protrusions known as primary cilia. Each cilium is encased by a specialized membrane which is enriched in protein complexes that help the cell sense its local environment. Some of these complexes help transport ions in out of the cell, while others act as receptors that receive chemical signals called ligands. A unique ion channel known as the polycystin complex is able to perform both of these roles as it contains a receptor called PC-1 in addition to an ion channel called PC-2. Various mutations in the genes that code for PC-1 and PC-2 can result in autosomal dominant polycystic kidney disease (ADPKD), which is the most common monogenetic disease in humans. However, due to the small size of primary cilia – which are less than a thousandth of a millimeter thick – little is known about how polycystin complexes are regulated and how mutations lead to ADPKD. To overcome this barrier, Ha et al. modified kidney cells grown in the lab so that PC-1 and PC-2 form a working channel in the plasma membrane which surrounds the entire cell. As the body of a cell is around 10,000 times bigger than the cilium, this allowed the movement of ions across the polycystin complex to be studied using conventional techniques. Experiments using this newly developed assay revealed that a region at one of the ends of the PC-1 protein, named the C-type lectin domain, is essential for stimulating polycystin complexes. Ha et al. found that this domain of PC-1 is able to cut itself from the protein complex. Further experiments showed that when fragments of PC-1, which contain the C-type lectin domain, are no longer bound to the membrane, they can activate the polycystin channels in cilia as well as the plasma membrane. This suggests that this region of PC-1 may also act as a secreted ligand that can activate other polycystin channels. Some of the genetic mutations that cause ADPKD likely disrupt the activity of the polycystin complex and reduce its ability to transport ions across the cilia membrane. Therefore, the cell assay created in this study could be used to screen for small molecules that can restore the activity of these ion channels in patients with ADPKD.; NA; NA; BACKGROUNDA treatment option for autosomal dominant polycystic kidney disease (ADPKD) has highlighted the need to identify rapidly progressive patients. Kidney size/age and genotype have predictive power for renal outcomes, but their relative and additive value, plus associated trajectories of disease progression, are not well defined.METHODSThe value of genotypic and/or kidney imaging data (Mayo Imaging Class; MIC) to predict the time to functional (end-stage kidney disease [ESKD] or decline in estimated glomerular filtration rate [eGFR]) or structural (increase in height-adjusted total kidney volume [htTKV]) outcomes were evaluated in a Mayo Clinic PKD1/PKD2 population, and eGFR and htTKV trajectories from 20-65 years of age were modeled and independently validated in similarly defined CRISP and HALT PKD patients.RESULTSBoth genotypic and imaging groups strongly predicted ESKD and eGFR endpoints, with genotype improving the imaging predictions and vice versa; a multivariate model had strong discriminatory power (C-index = 0.845). However, imaging but not genotypic groups predicted htTKV growth, although more severe genotypic and imaging groups had larger kidneys at a young age. The trajectory of eGFR decline was linear from baseline in the most severe genotypic and imaging groups, but it was curvilinear in milder groups. Imaging class trajectories differentiated htTKV growth rates; severe classes had rapid early growth and large kidneys, but growth later slowed.CONCLUSIONThe value of imaging, genotypic, and combined data to identify rapidly progressive patients was demonstrated, and reference values for clinical trials were provided. Our data indicate that differences in kidney growth rates before adulthood significantly define patients with severe disease.FUNDINGNIDDK grants: Mayo DK058816 and DK090728; CRISP DK056943, DK056956, DK056957, and DK056961; and HALT PKD DK062410, DK062408, DK062402, DK082230, DK062411, and DK062401.; Monoallelic mutations of DNAJB11 were recently described in seven pedigrees with atypical clinical presentations of autosomal dominant polycystic kidney disease. DNAJB11 encodes one of the main cofactors of the endoplasmic reticulum chaperon BiP, a heat-shock protein required for efficient protein folding and trafficking. Here we conducted an international collaborative study to better characterize the DNAJB11-associated phenotype. Thirteen different loss-of-function variants were identified in 20 new pedigrees (54 affected individuals) by targeted next-generation sequencing, whole-exome sequencing or whole-genome sequencing. Amongst the 77 patients (27 pedigrees) now in total reported, 32 reached end stage kidney disease (range, 55-89 years, median age 75); without a significant difference between males and females. While a majority of patients presented with non-enlarged polycystic kidneys, renal cysts were inconsistently identified in patients under age 45. Vascular phenotypes, including intracranial aneurysms, dilatation of the thoracic aorta and dissection of a carotid artery were present in four pedigrees. We accessed Genomics England 100,000 genomes project data, and identified pathogenic variants of DNAJB11 in nine of 3934 probands with various kidney and urinary tract disorders. The clinical diagnosis was cystic kidney disease for eight probands and nephrocalcinosis for one proband. No additional pathogenic variants likely explaining the kidney disease were identified. Using the publicly available GnomAD database, DNAJB11 genetic prevalence was calculated at 0.85/10.000 individuals. Thus, establishing a precise diagnosis in atypical cystic or interstitial kidney disease is crucial, with important implications in terms of follow-up, genetic counseling, prognostic evaluation, therapeutic management, and for selection of living kidney donors.; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; ClinicalTrials.gov NCT01377246; EudraCT: 2011-000138-12.; NA; NA; NA; NA; NA; NA; ClinicalTrials.gov Identifier: NCT01616927.; NA; NA; The diagnosis of autosomal dominant polycystic kidney disease (ADPKD) relies on imaging criteria in the setting of a positive familial history. Molecular analysis, seldom used in clinical practice, identifies a causative mutation in >90% of cases in the genes PKD1, PKD2, or rarely GANAB. We report the clinical and genetic dissection of a 7-generation pedigree, resulting in the diagnosis of 2 different cystic disorders. Using targeted next-generation sequencing of 65 candidate genes in a patient with an ADPKD-like phenotype who lacked the familial PKD2 mutation, we identified a COL4A1 mutation (p.Gln247*) and made the diagnosis of HANAC (hereditary angiopathy with nephropathy, aneurysms, and muscle cramps) syndrome. While 4 individuals had ADPKD-PKD2, various COL4A1-related phenotypes were identified in 5 patients, and 3 individuals with likely digenic PKD2/COL4A1 disease reached end-stage renal disease at around 50 years of age, significantly earlier than observed for either monogenic disorder. Thus, using targeted next-generation sequencing as part of the diagnostic approach in patients with cystic diseases provides differential diagnoses and identifies factors underlying disease variability. As specific therapies are rapidly developing for ADPKD, a precise etiologic diagnosis should be paramount for inclusion in therapeutic trials and optimal patient management.; These data indicate high prevalence of hypertension in children with autosomal dominant polycystic kidney disease starting at young ages.; NA; NA; NA; NA; Overactivation of Src has been linked to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). This phase 2, multisite study assessed the efficacy and safety of bosutinib, an oral dual Src/Bcr-Abl tyrosine kinase inhibitor, in patients with ADPKD. Patients with ADPKD, eGFR≥60 ml/min per 1.73 m<sup>2</sup>, and total kidney volume ≥750 ml were randomized 1:1:1 to bosutinib 200 mg/d, bosutinib 400 mg/d, or placebo for ≤24 months. The primary endpoint was annualized rate of kidney enlargement in patients treated for ≥2 weeks who had at least one postbaseline magnetic resonance imaging scan that was preceded by a 30-day washout (modified intent-to-treat population). Of 172 enrolled patients, 169 received at least one study dose. Per protocol amendment, doses for 24 patients who initially received bosutinib at 400 mg/d were later reduced to 200 mg/d. The annual rate of kidney enlargement was reduced by 66% for bosutinib 200 mg/d versus placebo (1.63% versus 4.74%, respectively; <i>P</i>=0.01) and by 82% for pooled bosutinib versus placebo (0.84% versus 4.74%, respectively; <i>P</i><0.001). Over the treatment period, patients receiving placebo or bosutinib had similar annualized eGFR decline. Gastrointestinal and liver-related adverse events were the most frequent toxicities. In conclusion, compared with placebo, bosutinib at 200 mg/d reduced kidney growth in patients with ADPKD. The overall gastrointestinal and liver toxicity profile was consistent with the profile in prior studies of bosutinib; no new toxicities were identified. (ClinicalTrials.gov: NCT01233869).; NA; Strategies for prognostic enrichment, such as image classification, should be used in the design of RCTs for ADPKD to increase their power and reduce their cost.; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; Finding that sirolimus was unsafe and ineffective in patients with ADPKD and renal insufficiency suggests that mTOR inhibitor therapy may be contraindicated in this context.; NA; NA; NA; NA; Autosomal-dominant polycystic kidney disease (ADPKD) affects up to 12 million individuals and is the fourth most common cause for renal replacement therapy worldwide. There have been many recent advances in the understanding of its molecular genetics and biology, and in the diagnosis and management of its manifestations. Yet, diagnosis, evaluation, prevention, and treatment vary widely and there are no broadly accepted practice guidelines. Barriers to translation of basic science breakthroughs to clinical care exist, with considerable heterogeneity across countries. The Kidney Disease: Improving Global Outcomes Controversies Conference on ADPKD brought together a panel of multidisciplinary clinical expertise and engaged patients to identify areas of consensus, gaps in knowledge, and research and health-care priorities related to diagnosis; monitoring of kidney disease progression; management of hypertension, renal function decline and complications; end-stage renal disease; extrarenal complications; and practical integrated patient support. These are summarized in this review.; NA; NA; The rate of renal disease progression varies widely among patients with autosomal dominant polycystic kidney disease (ADPKD), necessitating optimal patient selection for enrollment into clinical trials. Patients from the Mayo Clinic Translational PKD Center with ADPKD (n=590) with computed tomography/magnetic resonance images and three or more eGFR measurements over ≥6 months were classified radiologically as typical (n=538) or atypical (n=52). Total kidney volume (TKV) was measured using stereology (TKVs) and ellipsoid equation (TKVe). Typical patients were randomly partitioned into development and internal validation sets and subclassified according to height-adjusted TKV (HtTKV) ranges for age (1A-1E, in increasing order). Consortium for Radiologic Imaging Study of PKD (CRISP) participants (n=173) were used for external validation. TKVe correlated strongly with TKVs, without systematic underestimation or overestimation. A longitudinal mixed regression model to predict eGFR decline showed that log2HtTKV and age significantly interacted with time in typical patients, but not in atypical patients. When 1A-1E classifications were used instead of log2HtTKV, eGFR slopes were significantly different among subclasses and, except for 1A, different from those in healthy kidney donors. The equation derived from the development set predicted eGFR in both validation sets. The frequency of ESRD at 10 years increased from subclass 1A (2.4%) to 1E (66.9%) in the Mayo cohort and from 1C (2.2%) to 1E (22.3%) in the younger CRISP cohort. Class and subclass designations were stable. An easily applied classification of ADPKD based on HtTKV and age should optimize patient selection for enrollment into clinical trials and for treatment when one becomes available.; Autosomal dominant polycystic kidney disease (ADPKD) is a leading cause of ESRD. A central defect associated with ADPKD pathology is elevated levels of 3', 5'-cyclic AMP (cAMP). Compounds such as tolvaptan and pasireotide, which indirectly reduce adenylyl cyclase 6 (AC6) activity, have hence proven effective in slowing cyst progression. Here, we tested the efficacy of these compounds individually and in combination in a hypomorphic PKD1 model, Pkd1(R3277C/R3277C) (Pkd1(RC/RC)), in a 5-month preclinical trial. Initially, the Pkd1(RC/RC) model was inbred into the C57BL/6 background, minimizing disease variability, and the pathogenic effect of elevating cAMP was confirmed by treatment with the AC6 stimulant desmopressin. Treatment with tolvaptan or pasireotide alone markedly reduced cyst progression and in combination showed a clear additive effect. Furthermore, combination treatment significantly reduced cystic and fibrotic volume and decreased cAMP to wild-type levels. We also showed that Pkd1(RC/RC) mice experience hepatic hypertrophy that can be corrected by pasireotide. The observed additive effect reinforces the central role of AC6 and cAMP in ADPKD pathogenesis and highlights the likely benefit of combination therapy for patients with ADPKD.; NA; NA; NA; NA; NA; NA; NA; Chronic pain is a common concern in patients with autosomal dominant polycystic kidney disease (ADPKD). We report what to our knowledge is the first catheter-based renal denervation procedure in a patient with ADPKD resulting in successful management of chronic pain. The patient was a 43-year-old woman whose chronic pain could not be controlled by pain medication or splanchnic nerve blockade. Transluminal radiofrequency renal denervation was performed as an experimental therapeutic option with an excellent result, indicating that this procedure should be considered for chronic pain management in ADPKD.; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA; NA |