| Outcome Measures: |
Primary: Change in mean Glycated Hemoglobin (HbA1c) levels, The null hypothesis is that there is no significant difference between the voglibose and glibenclamide treatment groups in the change in mean HbA1c levels after 6 weeks of add-on therapy to metformin in the T2DM patients (i.e. H0: µ1 = µ2 where µ1 is the mean HbA1c change in the glibenclamide group and µ2 is the mean HbA1c change in the voglibose group). The alternative hypothesis is that there is a significant difference between the voglibose and glibenclamide groups in the change in mean HbA1c levels after 6 weeks of add-on therapy to metformin in the T2DM patients (i.e. H1: µ1 ≠ µ2)., Baseline & Week 6|Change in mean Glycated Hemoglobin (HbA1c) levels, The null hypothesis is that there is no significant difference between the voglibose and glibenclamide treatment groups in the change in mean HbA1c levels after 12 weeks of add-on therapy to metformin in the T2DM patients (i.e. H0: µ1 = µ2 where µ1 is the mean HbA1c change in the glibenclamide group and µ2 is the mean HbA1c change in the voglibose group). The alternative hypothesis is that there is a significant difference between the voglibose and glibenclamide groups in the change in mean HbA1c levels after 12 weeks of add-on therapy to metformin in the T2DM patients (i.e. H1: µ1 ≠ µ2)., Baseline & Week 12 | Secondary: Change in Glycemic control with regard to Fasting Plasma Glucose (FPG), Differences in change in glycemic control with regard to FPG: The null hypothesis is that there is no significant difference between the voglibose and glibenclamide treatment groups in the mean FPG change (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean FPG change in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between the voglibose and glibenclamide groups in the mean changes of FPG (i.e. H1: µ1 ≠ µ2)., Baseline & week 6|Change in glycemic control with regard to Fasting Plasma Glucose (FPG), Differences in change in glycemic control with regard to FPG: The null hypothesis is that there is no significant difference between the voglibose and glibenclamide treatment groups in the mean FPG change (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean FPG change in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between the voglibose and glibenclamide groups in the mean changes of FPG (i.e. H1: µ1 ≠ µ2)., Baseline & week 12|Change in glycemic control with regard to Post Prandial Blood Glucose (PPBG), Differences in Change in glycemic control with regard to PPBG: The null hypothesis is that there is no significant difference between the voglibose and glibenclamide treatment groups in the mean PPBG change (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean PPBG change in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between the voglibose and glibenclamide groups in the mean changes of PPBG (i.e. H1: µ1 ≠ µ2)., Baseline & week 6|Change in glycemic control with regard to Post Prandial Blood Glucose (PPBG), Differences in change in glycemic control with regard to PPBG: The null hypothesis is that there is no significant difference between the voglibose and glibenclamide treatment groups in the mean PPBG change (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean PPBG change in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between the voglibose and glibenclamide groups in the mean changes of PPBG (i.e. H1: µ1 ≠ µ2)., Baseline & week 12|Lipid profile (LDL-c, HDL-c, TC, TG) comparison, Lipid profile (LDL-c, HDL-c, TC, TG) comparison: The null hypothesis is that there is no difference between the voglibose and glibenclamide groups in the mean changes in lipid profile (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean changes in lipid profile in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between voglibose and glibenclamide groups in the mean changes in lipid profile (i.e. H1: µ1 ≠ µ2)., Baseline & Week 6|Lipid profile (LDL-c, HDL-c, TC, TG) comparison, Lipid profile (LDL-c, HDL-c, TC, TG) comparison: The null hypothesis is that there is no difference between the voglibose and glibenclamide groups in the mean changes in lipid profile (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean changes in lipid profile in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between voglibose and glibenclamide groups in the mean changes in lipid profile (i.e. H1: µ1 ≠ µ2)., Baseline & Week 12|Anthropometric parameter changes in BMI, Anthropometric parameter changes in BMI: The null hypothesis is that there is no difference between the voglibose and glibenclamide groups in the mean anthropometric parameter changes (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean anthropometric parameter changes in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between voglibose and glibenclamide groups in the mean anthropometric parameter changes (i.e. H1: µ1 ≠ µ2)., Baseline & Week 6|Anthropometric parameter changes in BMI, Anthropometric parameter changes in BMI: The null hypothesis is that there is no difference between the voglibose and glibenclamide groups in the mean anthropometric parameter changes (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean anthropometric parameter changes in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between voglibose and glibenclamide groups in the mean anthropometric parameter changes (i.e. H1: µ1 ≠ µ2)., Baseline & Week 12|Anthropometric parameter changes in Waist Circumference (WC), Anthropometric parameter changes in WC: The null hypothesis is that there is no difference between the voglibose and glibenclamide groups in the mean anthropometric parameter changes (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean anthropometric parameter changes in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between voglibose and glibenclamide groups in the mean anthropometric parameter changes (i.e. H1: µ1 ≠ µ2)., Baseline & Week 6|Anthropometric parameter changes in Waist Circumference (WC), Anthropometric parameter changes in WC: The null hypothesis is that there is no difference between the voglibose and glibenclamide groups in the mean anthropometric parameter changes (i.e. H0: µ1 = µ2 where µ1 and µ2 represent the mean anthropometric parameter changes in the glibenclamide and voglibose groups respectively). The alternative hypothesis is that there is a difference between voglibose and glibenclamide groups in the mean anthropometric parameter changes (i.e. H1: µ1 ≠ µ2)., Baseline & Week 12|Drug related AEs, Drug related AEs: The null hypothesis is that there is no difference between the proportion of participants experiencing drug related AEs in the voglibose and glibenclamide groups (i.e. H0: p1 = p2 where p1 and p2 represent the proportion of participants experiencing a drug related AE in the glibenclamide and voglibose groups, respectively). The alternative hypothesis is that there is a difference between the proportion of participants experiencing drug related AEs in the voglibose and glibenclamide groups (i.e. H1: p1 ≠ p2)., Baseline & Week 6|Drug related AEs, Drug related AEs: The null hypothesis is that there is no difference between the proportion of participants experiencing drug related AEs in the voglibose and glibenclamide groups (i.e. H0: p1 = p2 where p1 and p2 represent the proportion of participants experiencing a drug related AE in the glibenclamide and voglibose groups, respectively). The alternative hypothesis is that there is a difference between the proportion of participants experiencing drug related AEs in the voglibose and glibenclamide groups (i.e. H1: p1 ≠ p2)., Baseline & Week 12
|